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A second-order erosion slowness theory of 
the development of surface topography 
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The spatial variation of energy deposited in a solid can lead to local variations in sputtering 
yield at points on the surface neighbouring the point of ion impact. An approximate 
theory is developed to describe this local sputtering yield variation in terms of the local 
morphology. It is then shown how, if this local variation merely moderates the standard 
sputtering yield-projectile incidence angle function by multiplication, an erosion slow- 
ness theory can be simply modified and generalized to allow prediction of the time 
development of sputtered surface morphology. Both transient and steady-state morph- 
ologies are explored. 

1. Introduction 
The development of surface topography during 
ion4nduced sputtering of solids is becoming 
relatively well documented experimentally [1,2] 
and a number of theories have been developed to 
model the observations within random, amorphous 
solids [3-5] or crystalline solids [6, 7]. A charac- 
teristic feature of such theories is that, with one 
exception [8], they associate primary changes in 
morphology only with the variations of local 
surface erosion rate with ion flux incidence angle 
to the local surface. Other secondary processes 
occurring either concomitantly with and/or as a 
result of ion irradiation have been discussed and 
these include surface and volume atomic migration 
and diffusion [9, 10], sputtered atom redeposition 
[11-15] and locally variable incident ion flux 
arising from particle reflection from neighbouring 
surface elements [11-15]. The role of pertur- 
bations in local erosion rate resulting from 
(a) native contaminants, impurities, inclusions and 
imperfections [1, 2], (b) radiation-induced imper- 
factions [6, 7], and (c) spatial variations in ion flux 
density [16-19], has also been discussed in detail. 

Only in the work of Sigmund [8], however, has 
any attention been devoted to the influence of the 
microscopic details of the sputtering phenomenon 
on macroscopic erosion processes. Thus Sigmund 
[8] considered the surface spatial distribution of 
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atomic sputtering ejection relative to the position 
of ion impingement on a surface resulting from the 
volume spatial distribution of the energy depo- 
sition from the projectile and atomic recoils in a 
linear cascade model and the intersection of this 
energy deposition profile with the surface. By con- 
sidering the differences in local energy deposition 
on infinite plane surfaces and at conjunctions of 
differently orientated semi-infinite planes, 
Sigmund [8] concluded that the erosion rates of 
corners or edges would be different from the 
erosion rates of the bounding planes and would 
be relatively enhanced or reduced according to 
whether the bounding planes and conjunction 
formed included or excluded the local ion flux, 
i.e. whether the apex represents a depression or 
protuberance relative to the ion flux direction. 
Moreover, Sigmund [8] determined that the mag- 
nitude of the erosion rate differences was a func- 
tion of the included angle at the conjunction and 
the dimensions over which such surface pertur- 
bations were important were when they were of 
the same order as linear dimensions of the energy 
deposition profile. 

As a result of these considerations, Sigmund [8] 
suggested that some of the conical or pyramidal 
features frequently observed on eroded surfaces 
(i) should possess apical angles smaller than those 
predicted by models which assume a dependence 
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of erosion rate only upon the incidence angle of 
the ion flux, and (ii) show a temporal stability 
against eradication not predicted by such models. 
It was also suggested that furrows or trench 
depressions should form in the pedal region of an 
inclined boundary at its intersection with a plane 
normal to the ion flux (e.g. a conical feature con- 
tained in a local zone or pit depressed below the 
extensive surrounding plane area). There is some 
experimental evidence for both proposals [1, 2, 
11-14] but alternative mechanisms for the pro- 
duction of such features based upon local vari- 
ations in incidence particle flux resulting from 
ion reflection and sputtered atom redeposition 
processes have also been advanced [11-15]. 

Another interesting and frequent experimental 
observation [1, 2, 20] is that the ion erosion 
induced the production of regular wave-like facet 
structures on plane surfaces of crystals, On inclined 
boundaries between neighbouring polycrystals, on 
inclined bounding planes of etch pits in crystals 
and even on the boundary plane of steps produced 
by differential erosion of amorphized semicon- 
ductors possessing a localized protective layer of 
lower erosion rate material on the initial surface 
[21 ]. Such repetitive features have been associated 
with the generation of regular dislocation networks 
in the substrate [6, 7], with irradiation enhanced 
or thermal surface atomic diffusion [22, 23] or 
with the attempt of the erosion process to relax 
the surface towards an effective minimum erosion 
yield condition [22]. The wavelength of such 
repetitive features often turns out to be of the 
order of five to ten times the most probable depth 
of energy deposition below the surface and is thus 
of the order of the overall cascade dimensions. 
It is, therefore, possible that some features of this 
type may depend, for their origin and stabilization, 
upon the microscopic details and the surface 
spatial distribution of erosion rate. 

In view of these several experimental obser- 
vations of surface feature development with 
dimensions comparable to those of average 
collision cascades, it was felt worthwhile to 
explore further the effects of local surface morph- 
ology in addition to local surface orientation upon 
local erosion rates. In the present communication 
we present an approximate analysis of the effects 
of the immediate environment on the erosion rate 
at an isolated surface point, illustrating the import- 
ance of local curvature, and outline how a more 
distant environment may be treated in a higher 
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order approximation. It is then shown how the 
spatial-temporal development of surfaces may be 
predicted assuming a product function for erosion 
rate (or sputtering yield) which combines the 
effects of both surface orientation and local cur- 
vature. In this analysis it is shown how a simple 
erosion slowness theory [3-5]  for orientation- 
dependent erosion rate only is easily modified to 
include curvature-dependent erosion in a similar 
manner to that of spatially variable incident flux 
erosion slowness theory [18]. Finally, some pre- 
dictions of time-dependent and steady-state 
morphological forms are examined. Such pre- 
dictions will be approximate and intuitive since, 
as will be demonstrated in Section 2, the curva- 
ture dependence and distant environment influence 
upon erosion can only be guessed. 

2. Influence of local surface morphology 
on sputtering yield 

Although many experimental studies of the vari- 
ation of sputtering yield, Y(O), for various ion -  
solid systems as a fuction of incidence angle (0) 
between ion flux and surface normal, have been 
conducted, they refer to measurements from 
either flat planar Surfaces or to surfaces of which 
the radius of curvature is much larger than the 
dimensions of individual or average recoil collision 
cascades. It is well known that the Y(O) functuion, 
for random solids, increases from a minimum at 
0 = 0 ,  to a maximum at 0 = 0 p  and declines 
towards zero as 0 ~ rr/2. The behaviour of Y(O) 
for  small 0 can be modelled satisfactorily [24] but 
fo r0  2 0p theory is inadequate. A major problem 
in modelling Y(O) for large 0 is the incomplete 
development of the collision cascade beneath the 
solid surface, a problem which will also assume 
importance in the subsequent examination of 
curvature-dependent sputtering. Since no experi- 
mental data, or theoretical models, are available 
for the sputtering yields of curved w we 
shall attempt here a simplified analysis based 
upon similar arguments to those advanced by 
Sigmund [8]. 

For simplicity we consider, as shown in Fig. 1, 
the differential sputtering yield of an infinitesimal 
arc length 6s' in the vicinity of a point B(x ', y ' )  on 
a two-dimensional surface generator S(x, y) in the 
x 0y  plane, resulting from impact of J ions sec -1 
per unit length of the surface in the vicinity of a 
point A(x,y). Following Sigmund [8], the differ- 
ential sputtering yield at B may be written 
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Figure 1 Schematic representation of sputtering at point 
B(x', y') on surface generator resulting from ion impact 
at point A(x,y) distant r from A. 

~Y( x ' , y ' , x , y )  = JklFD(r) '~s~s' ,  (1) 

where 5s and ~is' are infinitesimal arc lengths at 
A and B measured along the surface, FD(r ) is the 
energy deposition density at B1 vector distance r, 
from the point of ion impact at A, and k I is a 
constant dependent upon ion mass and energy and 
substrate mass and energy of atomic sublimation. 

In a full treatment of the effects of total 
environment on the local sputtering yield at B it 
would be necessary to integrate Equation 1 over 
all s, inserting an assumed form for FD(r ) and 
where r 2= (x'  - - x ) 2 +  ( y '  _ y ) 2  would be deter- 
mined from a prescribed instantaneous form for 
the surface profile S(x, y). 

Sigmund [8] presented such an analysis for (1) 
semi-infinite intersecting line (or plane) functions 
for S(x, y), and (2) a Gaussian approximation to 
FD(r ) [25]. As indicated earlier, the present studies 
will concentrate upon local rather than distant 
environment and so the full behaviour of S(x, y)  
will be ignored. In addition, whereas Sigmund [8] 
adopted the more correct [25] elliptical symmetry 
approximation to F D (r), for analytical convenience 
a circular approximation will be employed here. 

The simplified approach is now depicted in 
Fig. 2. A uniform flux density J ions sec -1 per 
unit length of surface is assumed to impinge 
normally in the -- 0y  direction on to a line surface 
which is everywhere parallel to 0x except for a 
small depressed region. This region is of length 2l 
projected on to 0x,  of the radius of curvature R,  
counted positively here for a concave depression, 
and of included angle 20m at the centre of curvature. 

Ion flux density J 

l l l l l l l [ l  
\ 

x - - -  .- z ~ - - i ~ _  x, 

Figure 2 The geometry employed to deduce the sputter- 
ing yield Y resulting from ions impacting uniformly 
(density J) over an arc of surface of radius R. 

Each ion is assumed to generate a collision 
cascade, and thus result in a spatial distribution of 
energy deposition, centred on a depth d below the 
point of ion impact on the surface. As a simpli- 
fying approximation, the energy deposition func- 
tion is then assumed to be 

FD(r) = ~ exp -- . (2) 

In comparison with the more correct elliptical 
approximation [8] to the energy deposition func- 
tion, Equation 2 identifies d with the mean depth 
of energy deposition and the standard deviations 
in the x and y directions of the energy deposition 
function. 

Considering ions impacting near point P on the 
surface within the arc XX', the differential sputter- 
ing yield at the centre C of the arc, per unit length 
of arc at C, is given by 

Ire = kl J"  ~is cos 0" d~ e -z~/ct~, (3) 

where Q, the centre of the cascade, is located 
distance d from P and distance z from C. The 
factor cos 0 arises from the projection of the arc 
length 5s measured from C at P upon the 0x  
direction. 

From the geometry of Fig. 2 it is readily 
deduced that, for small 0, 

QC z ~ pQ2 -t- QC 2 - -  2PQ" QC cos QPC 

2093 



or 
Z 2 ~ d 2 + R 2 0 2  = 2dRO sin0 (4a) 

since 
PC = s ,-~ RO. (4b) 

Thus, in small-angle approximation, 

Z 2 = d 2 q- R 2 0 2  - -  2dR02 (4c) 
or 

z 2 = d 2 + 02(R 2 --2dR). (40) 

To obtain the total sputtering yield at C it is 
necessary to integrate Equation 3 over three 
regions, i.e. from -- 0o to X, from X to X' and from 
X' to + ~. In view of the exponentially decaying 
nature of the energy deposition function of 
Equation 2, however, the major contributions to 
sputtering at C will be from ion impact on surface 
points P close to C such that z is of order d and 
thus Equation 3 may be integrated only over the 
region -- 0ra ~ 0 ~ + 0 m. Thus 

k l k2  
Yc~- d2 J ' R  

? x dO exp 
0m 

( 
(s) 

Provided that 02[(R2/d 2) - - (2R /d ) ]  is small, the 
exponential term may be expanded to first order 
and integrated to give 

kl k2 
Ye ~- d2 J ' R  e -1 

X [ m 3 

for small Ora, Om "~ I/R. Thus 

Ye "~" 2 ~ Jl e-1 

• I. (7a) 

As R ~ 0% i.e. the flat plane condition, 

2k,k2 ( 1 2 )  
Ye(~) -+ ~ J" l" e -1 1 -- ~ 5  (7b) 

and thus the yield ratio for curved to flat surfaces 
is given by 

re(R ) ~(12[Rd) 
-~ 1 + ( 7 c )  

Ye(o~ 1 -- �89 2) " 

Since 
12 2 2 R 0 m 
d 2 d 2 

has been assumed small, then 

re(R ) 2l 2 
- -  ~ 1 - t - - -  ( 7 d )  
Ye(~) 3Rd " 

Equation 7b reveals the expected result that, as 
the depth of the centre of the collision cascade 
(d), increases, so the sputtering yield decreases. 
Equation 7d, however, reveals that the curved 
surface yield may be enhanced or reduced relative 
to the plane surface yield depending upon the sign 
and magnitude of the radius of curvature R, the 
length of arc (approximately l) of the curved 
region and the magnitude of the depth of the 
centre of the collision cascade d (d > 0 always). 

It may be noted that similar conclusions as to 
the influence of R, l and d may be deduced if the 
integrated yield over the whole arc is determined 
rather than the value only at its centre. It may also 
be noted from Equation 7d that for positive radius 
of curvature (a depression), the sputtering yield of 
the curved surface is greater than that of a flat sur- 
face whereas for a negative radius of curvature 
(a protuberance) the sputtering yield of the curved 
surface is lower than that of a flat surface. The 
enhancement or eduction increases in importance 
as R decreases. Thus for surface feature dimensions 
of the order of the collision cascade dimensions 
the variation of sputtering yield predicted above 
corresponds in sense to the analysis of Sigmund 
[8] of the enhanced yield at the depressed inter- 
section of semi4nfinite planes and the reduced 
yield of a protuberant intersection. 

The preceding equations were derived assuming 
average normal incidence (i.e. 0 m small) of the ion 
flux J to the arc and the surrounding plane. If the 
flux is inclined to an arc surface, but the included 
angle 20 m is small, then an approximate idea of 
the behaviour of the yield may be obtained by 
replacing the depth of the cascade centre (d) by 
the 0y  projection, d cos 0. The fiat plane yield will 
thus vary as sec 20, from Equation 7b whereas, of 
course, the full plane surface integration leads to 
an approximate seeS/30 dependence [24] for 
0 < 0p. The d sec 0 projection will also moderate 
the bracketted term in Equation 7d and thus the 
curved surface:plane surface sputtering yield ratio 
will also depend upon the macroscopic angle of ion 
flux impingement through the R, l and d depen- 
dent term. 
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Since current theory does not adequately pre- 
dict the Y(O) function for plane surfaces for 
0 ~ Op, the present theory (which owes similar 
origins to the plane surface theory) cannot be 
anticipated to reasonably predict the Y(O) depen- 
dence for curved surfaces either. The major prob- 
lem of the flat plane theory, as clearly stated by 
Sigmund [8], is that, as the macroscopic angle 0 
increases, the collision cascade will be incom- 
pletely developed beneath the solid surface and 
thus }I(0) falls for 0 2 0p. In the present con- 
text, this problem is even more serious when the 
surface is considered curved and the radius of 
curvature and arc dimensions are of order of the 
collision cascade dimensions d. Under these 
circumstances, which are essentially those 
discussed in the above simplified model, the 
detailed dependence for Y(R)  deduced earlier, can- 
not be expected to accurately represent the R, l, d 
and 0 dependences of the curved surface yield. 
Nevertheless, and as argued by Sigmund [8], the 
types of relationship derived in Equations 7 
indicate some form of dependence of local sputter- 
ing yield upon local radius of curvature, local 
dimensions and cascade dimensions, when the 
macroscopic surface parameters R and I are of 
order d. There is also a variable influence of macro- 
scopic incidence angle 0 upon the extent of the 
moderation of sputtering yield due to surface 
curvature. On the basis of Equation 7d, therefore, 
we may write, as a first approximation, 

Y(O.R)  = Y(O, oo)g(O,R,l ,d),  (8) 

i.e. the sputtering yield of a curved surface is equal 
to that of the plane surface at the same mean angle 
of ion flux incidence moderated by some 
unknown function of the local surface dimen- 
sional and angular parameters. Since the preceding 
analysis is so approximate, we prefer not to hazard 
even a guess at the form of the function g, but 
note that is will assume importance when macro- 
scopic surface dimensions are of the order of 
cascade dimensions. Even this inexact conclusion 
will allow further progress on a generalized study 
of surface morphological evolution, however, as 
shown in the next section. 

3. Second-order  eros ion s lowness  theory  
When the sputtering yield Y(O) is a function of 0 
only, the deduction of the time evolution of an 
initially contoured surface is a relatively straight- 
forward process and may be accomplished 

graphically or computationally, but not generally 
analytically, because of the complex nature of 
the defining equations. The nature of these 
equations, however, does give clear guidance as 
to the calculation schemes to be followed and 
the rules to be obeyed. 

In an earlier analysis of surface topographic 
evolution, Carter et aL [3, 5] showed that if the 
space-time motion of points on a surface of 
orientation 0 to the ion flux was followed, then 
for uniform flux density J, the defining equations 
for 0 were 

and 

~0] _ O t  x n JdYc~ ~xxO0]t (9a) 

~0 J dY sin 0 cos 0 Y ~YY 't 
~ t t r  n 

where n is the solid atomic density. 
In a complementary analysis, Barber et al. [4] 

showed that the sputtering-induced surface 
development may be treated on a similar basis to 
the chemical dissolution of crystals which is itself 
well described by Frank's [26, 27] application of 
kinematic wave theory. Carter etal. [5] also 
showed that Equations 9a and 9b were of the 
kinematic wave type and were essentially hyper- 
bolic equations [28]. Equations 9a and 9b indicate 
that the spatial components of velocity of surface 
points maintaining constant orientation 0 are 

J dY 
- - - -  cos20 (10a) VxlO - n dO 

and 

 (' s,nO osO VY[O = /// 

and thus the total vector velocity of points of con- 
stant orientation 0 is given by 

vg = vxl$ + v~L$ 

= COS 2 "q- s i n  0 c o s  0 - -  

: 

The direction of motion of such points of constant 
orientation 0 is given by 
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Figure 3 Erosion slowness plot (I[Y cos 0 as a polar 
func t ion  o f  0) illustrating the  deduct ion of  the  character- 
istic velocity (v(O)) and direction (a) of  a surface e lement  
maintaining a cons tant  orientat ion 0 during erosion. 

dY 
- -  sin 0 cos 0 -- Y 
dO 

tan a = (10d) 
dY cos2 0 
dO 

Carter et al. ~[5] showed that these velocity par- 
ameters could be represented on the erosion 
slowness plot developed by Barber etal. [4] 
where the reciprocal surface normal erosion rate 
OP = n / J Y  cos 0 of a point o f  orientation 0 is 
plotted as a function of 0, by the reciprocal mag- 
nitude and the direction of the normal 0 N from 
the origin of the erosion slowness plot to its inter- 
section with the tangent to the erosion slowness 
plot at the surface orientation 0. Equations 10c 
and 10d also illustrate that the spatial direction 
and velocity of motion of points maintaining 
constant orientation 0 as the surface changes in 
time are constants and thus the loci of points of 
constant orientation 0 are straight lines. These 
properties of the erosion slowness plot are 
illustrated in Fig. 3. Barber et al. [4] also showed 
that if two neighbouring points of orientation 01 
and 0~ on the surface followed intersecting 
trajectories, then at the point of intersection an 
edge developed (i.e. a zero radius discontinuity 
on the surface). The velocity and direction of the 
motion of this edge were then determined from 
the erosion slowness plot from the normal from 
the origin to the chord joining th e points of 
orientation 01 and 02 on the erosion slowness plot. 
Such edges were identified b y  Carter etal. [3, 5] 
as equivalent to the motion of intersecting linear 
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surface segments developed in an earlier theory 
of topography development by Stewart and 
Thompson [29]. It was also shown [3, 5] that the 
loci of such edges were not necessarily linear. 

The application of these concepts to the study 
of the evolution of surface morphology has been 
undertaken by Barber et al. [4], Carter et al. [5], 
Ducommun etal. [30, 31] and Witcombe [32]. 
The major conclusions which may be reached for a 
random isotropic solid are that (1) the final, 
steady-state morphology developed from an 
initially randomly undulating surface is a fiat 
plane (or segments of parallel flat planes) of that 
orientation contained within the full range of 
orientations of the initial profile, relative to the 
ion flux, which represents a minimum erosion 
rate parallel to the ion flux; (2) only orientations 
initially present (or potentially present via 
inclusion within the range of initial orientations) 
will exist at any stage of erosion; (3) during 
dynamic evolution pyramidal, ridge and boundary 
protuberant structures inclined at an angle 0p to 
the ion flux may form transiently but be later 
eroded. The fiat plane form results from the 
requirement that the characteristic trajectories 
must all be parallel on the erosion slowness plot 
and that the vector velocity vo be minimized. 
Another useful result of this first-order theory 
is that the rate of change of radius of curvature of 
a surface element maintaining constant orientation 
0 may also be deduced to be [5, 9, 31] 

} = n [d02 cosO-2-d-~-sinO . (11) 

Recently Carter etal. [16], Smith and Walls [17, 
,9] and Nobes etal. [18] have further extended 
the above form of erosion slowness theory to 
include the more general case of spatially variable 
ion flux density J ( x , y ) .  It was shown [16, 18] 
that in this case, Equations 10a and 10b become 

vx 1 d(JY) 
o - n dO c~ (12a) 

(125) 
However it was also deduced that it was more 
valuable to consider the motion of points on the 
time-developing surface, which maintained not 
constant orientation 0 but constant value of the 
product J .Y .  For spatially uniform J this corre- 
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sponds to a constant Y and concomitantly con- 
stant orientation 0. In the constant JY  framework 
it was shown that corresponding results to 
Equation 12 may be deduced as 

Vx J dY 
o T -  n dO c~ (13a) 

and f s n0cos0- } 7)y , / y  ~ ~ -" 

The importance of these results is that for con- 
stant JY  the vector velocity vlav is identical to 
that given by Equation lOc for constant orien- 
tation 0 provided that the spatially appropriate 
value of J is chosen and that the direction tan a l jy  
is identical to that given by Equation 10d indepen- 
dent of J. 

This means that the erosion slowness curve 
depicted in Fig. 3 for spatially uniform flux d.en- 
sity J can be used equally readily for spatially non- 
uniform J as follows. For all known values of J 
over the real surface, erosion slowness curves are 
constructed similar to the one shown in Fig. 3, 
and which are merely magnitude scaled in J but 
unchanged in 0 dependence. Points on the initial 
surface of known J and Y (hence 0) are chosen 
and the appropriate erosion slowness plots for 
each value of J are consulted to give the mag- 
nitude and direction of motion of each surface 
point. The motion of each surface point is then 
determined for a fixed time step ~t (or local ion 
density step J~t) and a new surface reconstructed 
from the individual point motion. This step carries 
each surface point into a changed J value so that 
the next iteration proceeds with modified J and 0 
for each surface point and the appropriate erosion 
slowness plots for each J value must be again con- 
sulted. This process is continued to study the 
dynamic development of the surface morphology. 
It turns out [16], just as in the constant Jcase, that 
edges may form with transient form and produce 
quasi-conical protuberances and depressions but 
except under very specific conditions of the Y(O) 
form and the J(x,y)  variation, no steady-state 
end forms can result, i.e. the surface morphology 
is constantly changing. 

In spatially uniform flux density conditions, 
the characteristic trajectories or loci of points of 
constant orientation are straight lines, whereas in 
spatially variable flux density conditions, the 
orientations of surface points for which the 
product JY  is constant are constantly changing. 

Indeed it is readily shown that the variation of 0 
along a constant JY  trajectory is described by 
[18, 19] 

~0 - Y c~ OJ Jr" (14) 
57 . 

This equation provides an alternative means of 
following the dynamic development of an eroded 
surface since, if the initial surface is prescribed and 
values of 0 are known and if the spatial variation 
of J is prescribed, then the change 60 in orien- 
tation 0 and the changed co.ordinates of the point 
may be deduced since the generated erosion slow- 
ness plot describes the magnitude and direction of 
motion uniquely for all 0. For short time steps, 
J may be assumed constant. 

As in the spatially uniform J case, edges must 
be handled specially and the motion of edges is 
determined from chord construction between 
erosion slowness plots of different J1 and J2 flux 
densities appropriate to the neighbouring points of 
orientations 01 and 02. It should also be emphasized 
that, whereas in the constant J case, only orien- 
tations present in the initial surface can be main- 
tained [26] new orientations may emerge in the 
variable J condition (Equation 14). 

The reason for the preceding review of current 
erosion slowness theory is that it provides an 
important starting point for evaluating surface 
morphological change when the erosion rate is 
not merely a function of ion flux density and 
incidence angle but may also be a function of local 
environment. 

Considering, for simplicity, the case of constant 
ion flux density then, if the product function of 
Equation 8 can be assumed to represent the effects 
of incidence angle and local environment on the 
sputtering yield of curved surfaces at mean incli- 
nation 0, the surface normal erosion rate On may 
be written 

J 
o n  = - - Y ( O ) .  cos 0.g. (15) 

n 

Use of this expression then leads to equations for 
Vxlo, Vrlo, Vo, tan alo(aR/8t)lo identical to those 
of Equations 10 to 13 except that JY is every- 
where replaced by JY'g. This result arises since 
Equation 9a for example, derives from the 
equation 

~-t,r a OO O0 = c os20 ~ (On sec 0) (16) 
t 
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Figure 4 A hypothetical family of erosion 
slowness plots where the g(R), radius of 
curvature moderating function on Y(O) is 
independent of orientation 0. 

o r  

~-x t ~0 ao = h(O,x ,  ) Ox t' 

where h(O, x, t) is some function of O, x and t. 
Equations of this type can generally be analysed 

in terms of the characteristics method applicable 
to hyperbolic equations [28]. The erosion slowness 
technique is a special case of the characteristics 
approach. Indeed, even if more distant effects than 
the local effects considered here, when integrated 
over all space, lead to a defining equation for the 
local variation of O, of the form of Equation 16, 
the characteristics method can be used, in 
principle, to evaluate the surface morphology 
development. 

Essentially this means that in the present 
approximation where the generalized sputtering 
yield at orientation O, is written as a product 
function of the corresponding yield for the flat 
surface condition (Y(O, oo)) and a function describ- 
ing local environment influence (which may itself 
be a function of 0), all equations which describe 
the flat plane erosion case with given Y(O, oo) also 
describe the curved surface development provided 
that Y(O, oo) is everywhere moderated by the g 
function appropriate to local conditions. The 
importance of this recognition is that, just as in 
the variable ion flux density case where J moder- 
ates Y locally, so does g moderate Y locally and 
thus we can again construct a family of erosion 
slowness curves for each g function. Consequently, 
if the Y(O, oo) function for the flat plane condition 
is known, this provides the basic erosion slowness 
curve and for each value of 1/[Y(O, oo)cos 0] on 

this curve we can construct a variation about this 
value by multiplication by an appropriate g-1 
function at each 0 value. Although straightforward 
in principle, the discussion of Section 2 illustrates 
the practical difficulties of deducing a g function 
appropriate to all local environment and orien- 
tation conditions. In general, however, it might be 
expected that the effect of the g function would 
be to broaden the single I1(0, oo) function into 
some band function. A hypothetical example is 
given in Fig. 4 where it is assumed that g increases 
with decreasing radius of curvature R to some 
limiting values (defining the band limits of the 
erosion slowness family of curves), such that g > I 
for R > 0 (i.e. a depression) and g < 1 for R < 0 
(i.e. a protuberance) and g is independent of 0. 
Once the form of g is specified (known or 
assumed) the erosion slowness concepts outlined 
earlier may be readily applied to deduce the 
time-dependent surface morphological develop- 
ment of an initially prescribed surface. Thus it is 
possible to follow either the progress of surface 
points maintaining constant Y(O).g in space by 
employing Fig. 4 for the appropriate erosion 
velocities (and directions) at each g value on the 
initial and developing curves or in the special case 
where g is independent of 0 (as in Fig. 4), the pro- 
gress of surface points maintaining constant orien- 
tation 0. In this case the g function represents an 
orientation independent moderation of the velocity 
and direction of motion of such points as shown 
by Equations 12a and 12b for g(O) independent 
of 0. Even in the case where g is not independent 
of orientation 0, the generalized family of erosion 
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slowness curves may still be employed to monitor 
the evolution of a surface profile since each point 
on the initial surface can be assigned 0 (and hence 
Y(O)) and local environment (hence g) values so 
that there will be corresponding velocities and 
directions of motion for each point somewhere on 
the erosion slowness family. The co-ordinates of 
surface point may then be incrementally adjusted 
over a time step and new co-ordinates deduced, 
thus moving each surface po in t  on to a different 
erosion slowness curve. The process is iterated to 
determine the temporal development of the sur- 
face. When local erosion rate is not a simple 
product function of the flat plane yield and local 
feature habit, or when more distant effects are to 
be included, then erosion slowness curves will be 
of limited value, but once the local erosion rate 
On can be prescribed, the use of characteristic 
methods [28] is still available. Moreover, if local 
accretion processes, resulting from, for example, 
surface and volume diffusion [9, 10], conden- 
sation of sputtered atoms [15] etc., are operative, 
then, provided that the nett local erosion rate p can 
be derived as a definable difference in erosion rate 
Pn and accretion rate Pa, all of the preceding 
discussion is applicable with p replacing Pn every- 
where (e.g. in Equation 16). Consequently, erosion 
slowness and/or characteristics methods are 
generally applicable in circumstances of erosion 
and/or growth. 

When erosion rate is a function of local environ- 
ment there are two important questions to be 
answered. Firstly, how may the time-dependent 
surface morphology and secondly, how may the 
time4ndependent surface morphology (i.e. any 
steady-state morphology) differ from those when 
erosion rate is local environment independent? 
The second of these questions is somewhat easier 
to answer from consideration of the erosion slow- 
ness concepts. Thus steady state is only achieved, 
i.e. a surface maintains a time-independent form, 
when the velocities and directions of motion of 
points of all constant orientations in the surface 
are equal. The velocity and direction of motion of 
a point on a surface is given by the inverse mag- 
nitude and direction of the normal from the origin 
to the tangent to the erosion slowness curve at the 
orientation of the surface point and appropriate 
to the local environment of that point. Con- 
sequently, if a range of orientations and local 
environments is to form the steady-state profile, 
the locus of points of constant (v(O)g) -1 on the 

family of erosion slowness curves must be a 
straight line. Moreover, the tangents to each of 
the erosion slowness profiles at these constant 
(v(O)g) -1 points must be parallel. In this way only 
are the normals for neighbouring g function 
erosion slowness curves equivalent in magnitude 
and direction. For the orientation-independent g 
function family of erosion slowness curves, 
illustrated in Fig. 4, this condition cannot be 
fulfilled for any 0 (or range of 0). Thus any steady- 
state morphology for a 0-independent g function 
must possess a single value of 0. According to the 
concepts developed in g-independent erosion slow- 
ness theory, the most stable [4, 5, 33] steady-state 
morphology, of constant orientation 0 is achieved 
for minimum v o in the available range of 0 orien- 
tations present on the initial surface since other 
erosion trajectories finally merge and collapse into 
this state. This trajectory intersection process will 
also occur for local environment-dependent 
erosion so that the most stable orientations will 
correspond to v o minimization. In erosion slow- 
ness curves of the form shown in Figs 3 and 4 this 
generally corresponds to 0 = 0, i.e. the erosion 
flux normal to the surface. The smallest minimum 
in vo, when erosion is g dependent also, will then 
denote the most stable surface configuration. In 
the context of Fig. 4 this suggests a final surface 
morphology of small hemispherical protuberant 
caps of radii and heights which minimize local 
erosion and preserve a close approximation to 
0 = 0. In this case, hemispherical depressions 
would be excluded from the steady-state morph- 
ology since they represent enhanced values of g 
relative to the flat plane or convex surface and are 
thus typical of larger values of v o than are these 
latter configurations. 

It is not impossible to conceive, however, that a 
more subtle form of g(O) may operate such that 
for both positive and negative radii of curvature, 
minima in the Y(O).g(O) function may occur over 
an extended angular interval near 0 = 0. If  such is 
the case then a steady-state morphology consisting 
of bumps and depressions of varying radii of cur- 
vature could result. Such forms have been inferred 
from scanning electron microscopic studies of 
normal incidence ion-bombarded Ge by Wilson 
[34]. However, although a hypothetical }7(0)'g(O) 
function may be postulated, which gives rise to 
an extended minimum, it should be considered 
unlikely. In particular, as pointed out by Sigmund 
[8] and confirmed here in the earlier discussion, 
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protuberances of cascade dimensions should 
possess lower sputtering yields than both macro- 
scopic protuberances of similar orientation and 
flat planes of 0 = 0 orientation, whereas the 
opposite is true for cascade-sized depressions. Thus 
a combination of small-angled cones contained 
within a pedal depression surrounded by a flat 
plane would not be a stable end form. 

It should be noted, therefore, that if there is no 
local environment (radius of curvature) depen- 
dence of the sputtering yield near the local mini- 
mum at 0 = 0, but a marked dependence for larger 
0 (e.g. in the region of 0 = 0v) then the steady- 
state morphology will be a flat plane or segments 
of planes and not some morphology relating to an 
undulatory surface composed of components with 
radii of curvature corresponding to minimum 
(peaks) and maximum (troughs) rates of erosion. 
Thus the generation of ripple forms resulting from 
the sandblasting erosion of ductile solids, in which 
the general theory of erosion was shown by Carter 
et al. [35] to be identical to that of the erosion 
slowness formalism developed above, cannot result 
from the radius of curvature and incidence angle 
variations of erosion rate alone, as suggested by 
Finnie and Kabil [36]. It should be noted, how- 
ever, that the suggestion that erosion processes 
may possess both orientation and curvature depen- 
dence was first indicated by Finnie and Kabil [36] 
and although these authors did not recognize the 
utility of erosion slowness methods they did 
deduce, correctly, the motion of surface points 
given by Equation 15. 

Although steady-state conditions did not result 
from a combination of minimum and maximum 
erosion conditions, intermediate conditions may 
contain such forms as is the case for g-independent 
erosion where transient peak and valley structures 
may occur. We therefore turn attention to the 
dynamic development of the morphology. 

Rather than selecting a variaty of specific 
initial surface contours (e.g. sphere [4]; sine wave 
[31, 37, 38], etc.) or a well-determined form for 
the g function, we will make some general 
observations arising from the earlier discussion 
which will be applicable in all situations. We may 
note from Equation 11 (with gY substituted 
for Y), Equations 12, 13 and 14, that if the initial 
surface contour 0 is everywhere constant so that g 
is independent of 0 there is (1) no variation of the 
rate of change of radius of curvature with initial 
surface co-ordinates for fixed orientation, (2) all 

surface orientations follow identical characteristic 
trajectories (e.g. vo, vxy, and tan a are invariant on 
the initial surface), and (3) there is no change in 
orientation along constant gY trajectories. This 
implies that for a perfectly flat initial surface no 
erosional shape change will occur, and that an 
infinite plane initially inclined at any arbitrary 
angle 0 a to the ion flux will maintain that geometry 
for all erosion time. This is a different result [16] 
from the case of spatially variable ion flux J where, 
ab initio, J is a function of space co-ordinates so 
that dJ/dx is finite whereas initially (and thus for 
all time) dg/dx is zero. The important conclusion 
is, therefore, that only if the initial surface is 
perturbed from the planar condition can time- 
variable morphology occur. Even with the best 
prepared surfaces, one would expect some initial 
surface non-uniformity on the atomic and large 
scales whilst the existence of extended defects 
(e.g, dislocations and inclusions such as surface 
and bulk impurities precipitates) could perturb 
the local sputtering yield Y. In addition, the ion 
bombardment itself may generate [1, 2] further 
imperfections such as dislocations and gas bubbles 
whilst fluctuations in local sputtering yield may 
give rise to craters of multi-atomic dimensions 
[39,40]. In such cases, local departure from 
planity can result and the potential for non- 
uniform erosion be realized. The subsequent 
development of such perturbations will then 
depend intimately on the real initial surface 
contour and upon the actual g function. However, 
and as in the case of g-independent erosion, 
Equation 11 reveals that for each initial orientation 
0, the sign and magnitude of the time rate of change 
of curvature of a surface element depends upon 
the difference between [d2(gY)/dO2]cosO and 
[2d(gY)/dO] sin0. Thus, potentially, protuberant 
and depressed structures with small radii of cur- 
vature may enlarge or contract depending upon 
the local behaviour of these two functions. More- 
over, Equation 14 indicates that new orientations, 
not  initially present in the surface contour, may 
also develop except in the unique case of an 
initially flat plane. It is thus expected that features 
of dimensions initially less than cascade dimensions 
could initially enlarge relative to their surround- 
ings since their erosion trajectory parameters 
(v and a) could differ from those of the sur- 
roundings. This conclusion concurs with that of 
Sigmund [8] regarding the potential development 
of subcascade dimensional features. However, even 
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if such small features do enlarge or, on the other 
hand, larger features contract, until some mini- 
mum or maximum erosion yield features pre- 
dominate with dimensions of the order of cascade 
dimensions, it must be stressed again that these 
can only be in equilibrium if all of the character- 
istic trajectories for all surface points are parallel 
and the erosion velocities equal. Thus, as already 
noted, whilst temporary protuberant and depressed 
structures may occur during erosion, as is the case 
for example in cone formation on a flat surface 
determined solely by Y(O) considerations inde- 
pendent of g moderation, it is quite unlikely that 
these can represent stable end forms since the 
probability of congruent (v(O)g) -1 behaviour for a 
broad range of orientations must be expected to 
be low. Thus a morphology of fine tipped or 
radiused cones surmounting larger angled cones, 
themselves located within pedal pits in a flat land, 
is unlikely to represent a stable configuration. 
However, they may represent a transient stage 
following the initial formation of a large cone or 
pyramid on a flat surface resulting either from 
contaminant protection [1, 2, 12, 29] or otherwise 
locally perturbed erosion [1, 2] and thus the 
observations [12, 41, 42] of macroscopic cones 
developing fine tips during their erosion towards 
disappearance may arise from the above and 
similar arguments by Sigmund [8]. 

The pedal depressions [1, 2, 11-13] surround- 
ing cones may also initiate and develop following 
similar processes but when both cones and 
depressions become much larger than cascade 
dimensions it would be expected that the sub- 
sequent evolution of the depressions would be 
more influenced by macroscopic enhancements of 
local sputtering flux density arising from reflection 
and directed sputtering processes from protuber- 
ances [11-13]. It is also possible that where 
re-entrant features or jogs develop in the faces of 
grain boundaries or with etch pits [1, 2, 20] during 
their preferential erosion that local sputtering 
yield becomes enhanced (i.e. somewhat equivalent 
to a depression on a flat surface) thus allowing for 
the excision of a pyramid structure on such 
boundaries [1, 2, 20] or the generation of a repeti- 
tive facet [1, 2, 20, 43] structure with repetition 
distance of the order of cascade dimensions. Other 
potential explanations [22] for such behaviour 
may be associated with preferential dislocation 
generation, implanted gas occlusion and ion- 
bombardment enhanced surface atomic migration 

but, again, the initiation, if not the temporal 
relative stability of such features, may be associ- 
ated with the local perturbational effects discussed 
here. 

In order to be more definitive about the role of 
such processes, substantially more experimental 
observations of the dynamic evolution of surface 
features during bombardment are required, par- 
ticularly with high magnification and resolution 
techniques to allow study on the scale of the 
dimensions of collision cascade. At present, obser- 
vations refer to a surface status which is generally 
on a much larger scale than such dimensions. 
Dynamic observations should allow determination 
of g functions if conducted over sufficiently small 
ion fluence (and thus surface morphology change) 
increments and then allow comparison of further 
predicted morpholpgical development with theor- 
etical arguments. 

4. Conclusions 
Following Sigmund's [8] proposal that the sputter- 
ing yield of non-planar surfaces may be locally 
modified where feature dimensions are of similar 
magnitude to collision cascade dimensions, an 
attempt has been made here to develop a general- 
ized model to describe the temporal modification 
of ion-bombarded surfaces which accommodates 
these local influences. It has been shown that if an 
appropriate describing function for local effects 
can be determined (a very approximate form was 
outlined in Section 2) and if this describing 
function is merely a multiplier to the conventional 
surface orientation-sputtering yield function then 
a slightly modified and generalized form of erosion 
slowness theory and methods can be developed. 
This theory has been employed to show that 
although local environment effects on sputtering 
yield may lead to the generation of transient 
structures of dimensions similar to cascade dimen- 
sions it is very unlikely that such features can 
represent time-independent stable end forms. It is 
suggested that high-resolution experimental studies 
would be benificial in evaluating the importance of 
local environment effects and hence in determining 
the validity of the proposed theoretical approach. 
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